

# Feasibility of Measuring Functional Performance of FSHD Patients **Using Wearable Sensors to Quantify Physical Activity**

Joost Kools<sup>1</sup>, Nicol Voermans<sup>1</sup>, Karlien Mul<sup>1</sup>, Baziel van Engelen<sup>1</sup>, Michelle L. Mellion<sup>2</sup>, John Jiang<sup>2</sup>, Jennifer Shoskes<sup>2</sup>, Kelly Marshall<sup>2</sup>, David Jackson<sup>2</sup>, Yuxi Zhao<sup>2</sup>, Anil Tarachandani<sup>3</sup>, Joanita Figueredo<sup>3</sup> Damien Eggenspieler<sup>4</sup>

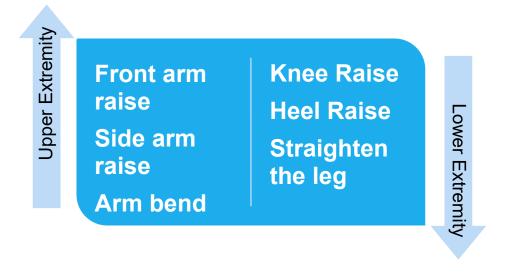
<sup>1</sup>Radboud University Medical Centre (Radboudumc), Nijmegen, NL, <sup>2</sup>Fulcrum Therapeutics, Cambridge, MA, USA, <sup>3</sup>UsinLife LLC, Whitehouse Station, NJ, USA, <sup>4</sup>Sysnav SAS, Vernon, France

| Introduction                                                                                                                                                                                                                                                                                                                                                                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| <ul> <li>FSHD is a serious, rare, progressive and heterogeneous disease, caused by the aberrant expression of DUX4 in skeletal muscle leading to progressive muscle loss and accumulation of disability.</li> <li>Wearable technology allows the collection of quantitative real-world data over long periods of time in a clinical study, providing deep insights into how patients feel and function</li> </ul> | <b>Feasibility and Compliance</b><br>Participant compliance for wearing the devices was extremely high at 99%. The total number of days that all<br>14 participants were monitored was 2,941 days or 36,758 hours (an average of 2,626 hours per participant).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| <ul> <li>Use of wearable devices in FSHD can provide critical data about how people living with FSHD function and<br/>manage their activities of daily living providing a sensitive assessment of disease progression and potentially</li> </ul>                                                                                                                                                                  | Period -> P-1 hrs       P-2 hrs       P-3 hrs       P-4 hrs       P-5 hrs       P-6 hrs       P-7 hrs       P-8 hrs       P-9 hrs       P-10 hrs       P-12 hrs       P-13 hrs       P-14 hrs       P-15 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-18 hrs       P-18 hrs       P-17 hrs       P-16 hrs       P-17 hrs       P-17 hrs       P-18 hrs       P-18 hrs       P-17 hrs       P-17 hrs       P-17 hrs       P-18 hrs       P-17 hrs       P-17 hrs       P-17 hrs <t< td=""></t<> |  |  |  |  |  |  |
| <ul> <li>response to treatment</li> <li>ActiMyo (Sysnav, Vernon, France) was developed to quantify the movements of ambulatory or non-ambulatory patients. This device provides reliable, quantifiable, and integrated estimate of patient activity through a patented</li> </ul>                                                                                                                                 | 103       176       179       149       163       174       162       142       166       182       182       173       188       179       178       167       183       168       100-180         104       171       182       184       163       175       150       162       189       174       190       174       184       189       141       137       100-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| magneto-inertial navigation measuring 3-dimensional (3D) movement of a patient's limbs with magnetic and inertial sensors.                                                                                                                                                                                                                                                                                        | 108       187       190       174       179       167       132       118       126       154       128       134       124       161       145       115       130       >180         112       153       163       121       169       177       180       185       151       128       163       127       195       165       155       193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Rationale                                                                                                                                                                                                                                                                                                                                                                                                         | 113       203       190       153       179       173       181       180       195       189       168       111       147       141       150       156       148       Periods post treatment (except for 123)         114       134       190       125       144       141       174       179       188       132       133       129       124       187       173       174       Periods post treatment (except for 123)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Measuring real-life activities provides critical assessments of how participants function in the real world,                                                                                                                                                                                                                                                                                                      | 115       145       149       153       136       125       128       140       155       126       138       145       135       154       132       end       and 124)         116       113       167       174       159       138       147       208       187       117       148       196       178       186       177       152       163       Image: Constraint of the period for 123       First treatment period for 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| unique insight into disease progression and potentially efficacy of treatments.<br>Objective                                                                                                                                                                                                                                                                                                                      | 119       152       174       162       169       139       175       181       171       126       176       169       167       168       170       163       136       and 124         120       113       102       110       108       112       110       99       115       103       108       115       98         123*       186       194       175       114       166       209       136       146       196       150       211       187       169       208       199       199       199       115       103       169       208       199       105       199       110       108       110       109       108       111       108       115       98       112       110       196       150       211       187       169       208       199       105       104       105       105       109       109       109       109       109       109       106       109       109       109       109       105       109       109       109       105       109       109       109       105       109       106       106       106       106       106 <td< td=""></td<>                                                                                                                                                                                                                      |  |  |  |  |  |  |
| <ul> <li>Evaluate feasibility to monitor daily activity and assess functional outcomes using wearable sensor devices in an<br/>open label study (OLS) of losmapimod in facioscapulohumeral muscular dystrophy (FSHD).</li> </ul>                                                                                                                                                                                  | 126     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166     166                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |

- Feasibility was measured by the reliability of the data over time and amount of background noise.
- The secondary objective was patients' compliance with using the wearable device.

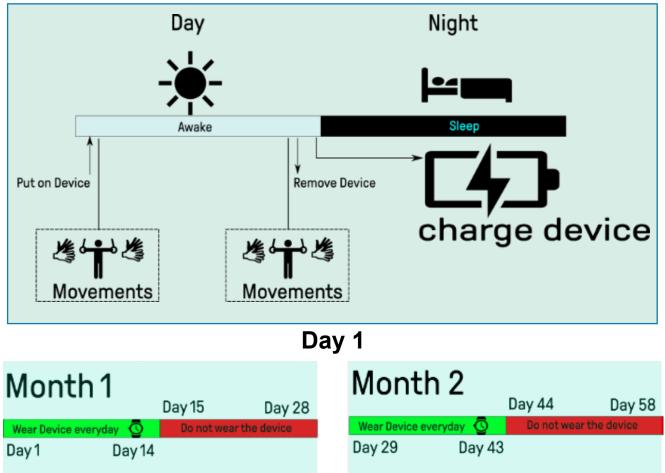
# **Methods**

Upper limb and lower limb mobility were evaluated with "Actimyo" made by Sysnav


- Actimyo, quantifies movements of patients with neuromuscular disorders such as Duchenne muscular dystrophy (DMD), Spinal amyotrophy (SMA), Parkinson's and records activity based on magneto-inertial navigation
- Raw data from the sensors are loaded on to the internal memory of the docking station/charging unit, and transmitted DAILY via an internet connection to a remote storage platform

Participants are provided with two watch like sensors to measure movements:

- 1. On the ankle for lower extremity movements like gait
- 2. On the wrist for upper extremity movements like mobility


Two kinds of movements were evaluated:

- Free living movement recorded by wearing two devices all day (12-16 hours)
- Imposed movements (2 times per day) set of movements twice daily









# **Study Design**

Single center open label

**Open-Label Study (OLS): Phase 2 Open-Label Single-Center, 52-Week Study** 

| User wears                        |                          | Analysis                | /ariables                  | Reports                                      | Variables derived from raw data                          |
|-----------------------------------|--------------------------|-------------------------|----------------------------|----------------------------------------------|----------------------------------------------------------|
| device and agg                    | Data<br>regated,<br>& QC | algorithm:<br>extracts  | are<br>atistically         | and<br>statistics<br>per period<br>& patient | Imposed variables • Imposed movements                    |
|                                   |                          |                         |                            |                                              | • Lower limb                                             |
| Variable                          | SEM                      | [Min ; Max]<br>Period 1 | Standard<br>Deviation (P1) | ICC<br>(P1,P2)                               | Real-life . Movement of upper limb<br>when body immobile |
| 95th percentile stride velocity   | 0.02 m/s                 | [0.62 ; 1.57] m/s       | 0.24 m/s                   | 99.1%                                        | variables • Movement of upper limb                       |
| 90th percentile walking perimeter | 1.6 m                    | [10 ; 60] m             | 11.6 m                     | 98.1%                                        | during walk                                              |
| Upper limb power                  | 0.05 W                   | [0.63 ; 1.69] W         | 0.25 W                     | 96.4%                                        | Other 6MWT                                               |
| Imposed movements                 | 4.1°                     | [75 ; 175] °            | 29.8°                      | 97.1%                                        | clinical - Reachable workspace                           |
| Arm swing during walk             | 5.0°                     | [ 25 ; 80] °            | 13.9°                      | 91.3%                                        | outcome • Ricci                                          |
| P = Period                        |                          |                         |                            |                                              |                                                          |

Analysis, Processing and Reliability

## Moderate to Strong Correlations between Clinic and Wearable Variables at Baseline

| Upper Extremity Variables | 50th Percentile<br>Pitch Angle                         | 50th Percentile Height of<br>Imposed Movements | 95th Percentile of pitch<br>angle  |  |
|---------------------------|--------------------------------------------------------|------------------------------------------------|------------------------------------|--|
| Right Arm RWS Total RSA   | 0.25                                                   | 0.79*                                          | -0.10                              |  |
| Max HHD R Elbow Flexor    | 0.56*                                                  | -0.05                                          | 0.66*                              |  |
| Lower Extremity Variables | Mean Distanced<br>Walked per Hour<br>(Stride Distance) | 95th percentile<br>Stride Length               | 95th percentile<br>Stride Velocity |  |
| 6-MWT                     | 0.54*                                                  | 0.85*                                          | 0.92*                              |  |
| Classic TUG               | -0.46*                                                 | -0.52*                                         | -0.61*                             |  |
| Max HHD R Ankle           | 0.47*                                                  | 0.61*                                          | 0.64*                              |  |

\* = p<0.05; values represented are Pearson correlations; RWS = reachable workspace; RSA = reachable surface area; R = right; HHD= hand-held dynamometry; 6-MWT=6-minute walk test; TUG=Timed up and go

Color Representation: High correlation (r >0.7) = green, Moderate correlation (0.5-0.7) = blue, Weak correlation (0.3-0.5) = yellow

FSHD participants are distinct in the location of disability. When divided into 4 groups<sup>1</sup>, in-clinic and wearable variables are coordinated with severity location

|  |  | 4                   |
|--|--|---------------------|
|  |  | <b>All Detiente</b> |
|  |  |                     |

| study (OLS) at Radboud  |  |
|-------------------------|--|
| University, Netherlands |  |

Study Population: Enrolled 14 participants with genetically confirmed FSHD1

|                                                                                                        | Baseline      | e St                       | art Losmapin      |                                    | /eek Open Label Lo    | osmapimod Treatment Pe | riod               | 7-Day Safet<br>Follow-Up |                                                  |                |
|--------------------------------------------------------------------------------------------------------|---------------|----------------------------|-------------------|------------------------------------|-----------------------|------------------------|--------------------|--------------------------|--------------------------------------------------|----------------|
| Scre                                                                                                   | anina         | -week Wear<br>Baseline Per |                   | Losmapi                            | mod tablet 15         | mg twice per day       | (N=14)             |                          | Extension<br>(N=12)                              |                |
| Visit 1<br>D-28                                                                                        | Visit 2<br>D1 | Visit 3<br>Week 4          | Visit 4<br>Week 8 | <b>Visit 5</b><br>Week 14<br>+/-2W | Visit 6<br>Week 24    | Visit 7<br>Week 36     | Visit 8<br>Week 48 |                          | <b>Every 3 Months</b><br>Safety follow-up only i | f not continui |
| Safety/PK                                                                                              |               |                            | ()                | Ð                                  | Ð                     | Ð                      | Ð                  | Ð                        | Ð                                                |                |
| DUX4 Activ<br>(Muscle Biopsy)                                                                          | vity          |                            | <b>E</b>          | - or -                             |                       |                        |                    |                          |                                                  |                |
| Imaging<br>(MRI, Ultrasound)                                                                           |               |                            |                   | er                                 | <u>e</u> r            |                        |                    | ر <mark>بطي</mark> ا     | ( <b>1</b>                                       |                |
| COAs<br>(Dynamometry, RV<br>QMT, TUG, MFM,                                                             |               | *                          | 2                 | *                                  |                       | *                      | 2                  |                          | 2                                                |                |
| PROs<br>(PGIC, FSHD-HI,<br>FSHD-RODS)                                                                  |               |                            |                   |                                    | (1)<br>               |                        |                    | ()<br>     <br> >>un     |                                                  |                |
| Main Ir                                                                                                | nclusi        | on Cri                     | teria:            |                                    |                       | Main Excl              | usion (            | Criteria:                |                                                  |                |
| <ul> <li>Genetically confirmed diagnosis of FSHD1 res</li> <li>Ricci score 2-4</li> <li>Cor</li> </ul> |               |                            |                   | results o                          | of the st<br>idicatio | n to MRI               |                    | nd                       |                                                  |                |

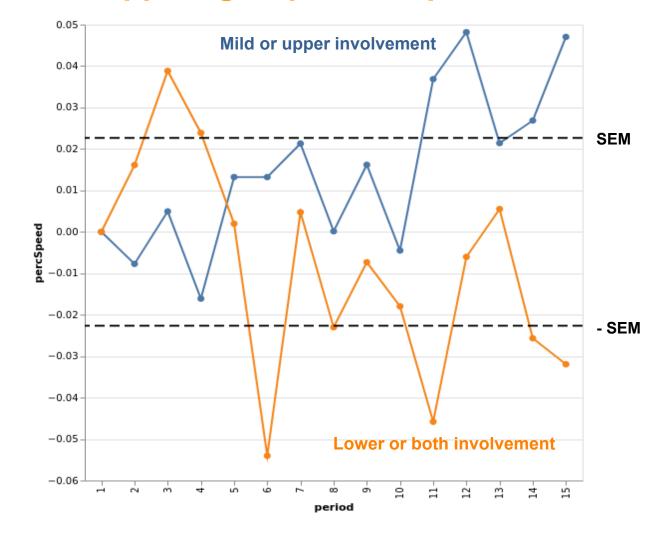
# **Demographics Characteristics**

|                                               |             | Losmapimod<br>15 mg BID (N=14) |
|-----------------------------------------------|-------------|--------------------------------|
| Age (years)                                   | Mean (SD)   | 45.7 (11.12)                   |
| Race, White                                   | n (%)       | 13 (92.9)                      |
| Body Mass Index (BMI)<br>(kg/m <sup>2</sup> ) | Mean (SD)   | 24.0 (2.94)                    |
| D474 Bonost Catagory $n (%)$                  | 1-3 Repeats | 3 (21.4)                       |
| D4Z4 Repeat Category, n (%)                   | 4-9 Repeats | 11 (78.6)                      |
|                                               | 2           | 0                              |
|                                               | 2.5         | 1 (7.1)                        |
| Ricci Score, n (%)                            | 3           | 5 (35.7)                       |
|                                               | 3.5         | 2 (14.3)                       |
|                                               |             |                                |

- All subjects completed the study
- 2 subjects declined participation in the extension study for reasons unrelated to study drug/adverse events

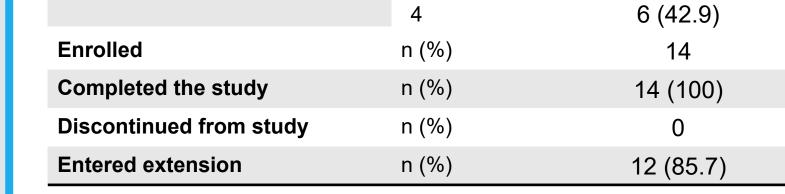
| Baseline (Mean, SD)                               | (n=3)       | (n=2)      | (n=6)       | (n=3)        | (n=14)      |
|---------------------------------------------------|-------------|------------|-------------|--------------|-------------|
| Classic TUG (s)                                   | 7.2 (0.5)   | 11.3 (2.7) | 13.9 (5.7)  | 8.4 (0.8)    | 10.9 (4.7)  |
| 95 Percentile Stride Velocity (m/s)               | 1.4 (0.1)   | 1.2 (0.1)  | 1.2 (0.4)   | 1.5 (0.1)    | 1.3 (0.3)   |
| Stride Distance (m/hr)                            | 95.4 (19.6) | 74.0 (8.3) | 55.4 (29.1) | 182.1 (91.8) | 93.8 (65.1) |
| 50 <sup>th</sup> Percentile Pitch Angle (degrees) | 16.4 (2.8)  | 26.9 (5.6) | 16.7 (5.3)  | 19.8 (4.5)   | 18.7 (5.6)  |

(1) Division into groups: The coordinator assessments of severity location and the comments in the EDC were used to divide the participants into 4 subjective groups. N represents participants in each group.


• Upper – greater disability in the upper extremity n=3

• Lower – greater disability in the lower extremity n=2

• Both – High disability in both upper and lower extremity n=6


• Mild – Mild disability in both upper and lower extremity n=3

### Physical function as measured by gait velocity tends to increase over 1 year treatment period in "Mild" or "Upper" group as compared to "Lower" or "Both" group.



Note: The observed change was greater than the measurement error (SEM)

## Conclusion



### • Measurement of functional performance in FSHD patients using wearable sensors in FSHD is feasible, reliable, and correlates with multiple clinical outcome assessments of upper and lower extremity function, activities of daily living and mobility. Patients were 99% compliant over the year long assessment. • This assessment could provide critical data about disease progression and treatment efficacy in future clinical trials.